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Abstract

Aim: This study aimed to assess the long-term impacts of various conservation agriculture practices on the infiltration characteristics of soil and to 
evaluate effectiveness of Kostiakov, Green and Ampt, and Philip models in predicting the infiltration rates.

Methodology: The treatments examined 
included the permanent broad bed (PBB), PBB 
with residue (PBB+R), permanent narrow bed 
(PNB), PNB with residue (PNB+R), zero tillage 
(ZT), and ZT with residue (ZT+R) and 
conventional tillage (CT). Infiltration models were 
fitted to the experimental data and performance 
of each model was evaluated using statistical 
criteria.

Results: Initial infiltration rate was maximum in 
PBB+R, which was 111.5% higher than in 
conventional tillage CT (lowest). Cumulative 
infiltration across all the treatments followed in 
the order of: PBB+R had the highest, followed by 
PNB+R>ZT+R>PBB>PNB>ZT>CT. The CA– 
based management practices showed 31.4– 
85.2% higher observed steady state infiltration 
rate than CT. The model derived parameters like 
“a” value of Kostiakov, “i ” of Green and Ampt and c

“S” of Philip were higher under PBB+R than CT 
by 138.6, 154.3 and 112.1%, respectively. 
Kostiakov model performed the best for 

2 –1 –1 –1predicting infiltration rates with the highest R ≥0.92 and the lowest errors (RMSE≤1.26 cm hr , ARE≤0.76 cm hr  and MAE≤0.96 cm hr ).

Interpretation: Therefore, it was proventhat the empirical Kostiakov model could effectively represent the infiltration process in soil.
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farming on soil infiltration. How the residue retention and bed 
management practices are affecting the soil infiltration in long run 
that could be concluded from the study so this area of research 
has much potential over the conventional modelling of soil 
infiltration.The current study aimed to assess the effects of 
various long-term CA-based management practices on soil 
infiltration characteristics, and evaluate the performance of 
infiltration models under CA-based practices.

Materials and Methods

Study area and experimental setup: The research was carried 
out in a long-term CA experiment that has been ongoing since 
2010. The study was conducted in maize–wheat cropping system 
located at the research farm (MB-14B) of the Indian Agricultural 
Research Institute (IARI) in New Delhi, India (28°35´N latitude 
and 77°12´E longitude). The climate of the study area is 
subtropical semi-arid, with hot, dry summers and cold, moist 
winters. Soil at the location is categorized as Typic Haplustept, 
and it has a sandy clay loam texture.

The experimental design employed seven treatments in a 
randomized complete block design with three replications. Seven 
treatments included, zero tillage (ZT), ZT with residue (ZT+R) 
permanent broad bed (PBB), PBB with residue(PBB+R), 
permanent narrow bed (PNB), PNB with residue (PNB+R), and 
conventional tillage (CT). During initial year, narrow and broad 
bed plots were preparedusing a ridge/bed maker and maintained 
as permanent structures in subsequent years. The CT plots 
underwent seasonal land preparation involving one pass each 
with a tractor-drawn disk plough, cultivator and harrow, followed 
by levelling to achieve a fine tilth. In contrast, no ploughing was 
conducted in the other plots. For residue removal (ZT, PPB and 
PNB) and CT plots, previous maize crops were manually 
harvested at base. In residue retention plots (ZT+R, PBB+R, and 
PNB+R), about 40% of previous crop straw/stover was kept as 
stubble. The details of field geometry for all the treatments, i.e., 
bed and furrow width of PBB and PNB, and details of planting 
geometry of crops have been reported by Das et al. (2018).

Measurement of infiltration: After wheat crop was harvested in 
2022-23, infiltration readings were taken. The measurements 
were made using a double-ring infiltrometer, which consisted of 
two concentric stainless-steel rings of radius 15 cm and 10 cm for 
outerand inner rings, respectively. The rings were implanted 5 cm 
deep into soilwith aid of a pouring plate and mallet, ensuring that 
small surface obstacles were removed to allow smooth insertion. 
A spirit level was used to certify both rings were at equal depth, 
while concentricity was checked with a steel tape. Flow rate of 
water through the inner ring was recorded under consistent 
environmental conditions. The infiltration rate (IR) was calculated 
by dividing the water depth i.e., cumulative infiltration (I) that had 
infiltrated the soil during the corresponding time interval (t) using 
the following equation (Eq. 1):

Introduction

Conventional farming involves the repeated practices 
like tilling, harrowing disking for seed bed preparation and 
management of weeds, which accelerates the breakdown of 
soil organic matter (SOM) and release of the nutrients. 
However, the use of heavy machinery and frequent tillage 
results in soil compaction, decreased pore space, restricted 
water infiltration and limited crop root growth, ultimately 
affecting the crop yields (Raj et al., 2023). Moreover, tillage 
operationexposes the soil to erosion by water and wind, 
triggerstopsoil loss, reduces fertility, and inhibits plant growth. 
To counter these challenges, conservation agriculture (CA) is 
extensively recognized as an effective method. Conservation 
agriculture includes reduced tillage or zero-till practices, 
maintenance of  a minimum 30% crop residue cover, and 
employs crop rotations with cover crops. CA enhances the soil 
properties and processes, improves climate regulation by 
carbon sequestration, decreases greenhouse gas emissions, 
improves water infiltration and increases water regulation and 
availability by improving the physical, chemical and biological 
characteristics of soils (Pathak et al., 2017; Adak et al., 2023).

Rapid water infiltration is vital in lessening erosion and 
enhancing water storage in semiarid and arid areas (Klik et al., 
2020). Infiltration is important for assessing effective rainfall, 
runoff, groundwater recharge, and designing soil and water 
conservation channels. A thorough understanding of infiltration is 
essential for agriculture water management, watershed 
management and, for designing hydraulic structures (Pramanik 
et al., 2019; Ghosh et al., 2020). Several factors that affect the soil 
water infiltration are vegetation cover and tillage practices, soil 
density, porosity, surface unevenness, SOM content, soil 
aggregate stability, and soil moisture levels (Amami et al., 2021). 
Various models have been usedto estimate the infiltration and to 
assist in designing irrigation systems and water management 
strategies. These models can be categorized into three types: 
empirical models, semi-empirical models and physical models 
(Mahapatra et al., 2020). Several infiltration models proposed by 
different Scientists include the “Green & Ampt model” (1911), 
“Kostiakov model” (1932), “Horton model” (1940), “Philip model” 
(1957), “Smith and Parlange model” (1978), and “Singh and Yu 
model” (1990). 

The choice of a suitable infiltration model is subjected to 
the soil types and field conditions. Among the proposed models, 
Kostiakov, Philip, and Green & Amptmodels are frequently used 
due to their simplicity and ease of computation (Atta-Darkwa et 
al., 2022). Kostiakov model is derived empirically, whereas the 
Green & Amptand Philip models are based on physical 
processes. Previous studies have evaluated various physical and 
empirical infiltration models under different conditions, there is 
limited research on behavior of soil infiltration and the 
performance of these models under different long-term 
CA–based practices (Thierfelder et al., 2009; Amami et al., 2021). 
Studies has been carried out to evaluate and model soil infiltration 
rate. But our study emphasizes the effect of long-term 
conservation agriculture (13year) and different bed system of 
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In these equations, “I” represents CI (cm), “i” is the IR (cm hr–1), 
“t” is time (hr), “S” is the sorptivity of soil (cm hr (- ), and “K” is the 

–1saturated hydraulic conductivity (HC) (cm hr ). The IR (i) was 
plotted against the reciprocal square root of time (t -1/2) to 
determine these parameters. The slope of the resulting best-fit 
curve corresponds to the value of “K”, while the intercept provides 
the value of S/2.

Evaluation of model performance: The model performance 
was assessed by computing the “coefficient of determination” 
(R2), “root mean square error” (RMSE) (Eq. 7), “mean absolute 
error” (MAE) (Eq. 8) and “average relative error” (ARE) (Eq. 9). 
The R2 values indicate the percentage of total variance that the 
model accounts for, and it ranges from 0 (i.e.,no correlation) to 1 
(i.e., perfect correlation). The MAE reflects the mean size of 
prediction errors, without considering their direction. The RMSE 
represents the square root of the average squared differences 
between predicted and observed values. The ARE was calculated 
to assess the model's fit, representing the mean ratio of the 
absolute error to the observed data.

Where, Ŷi- represents predicted value and Yi is observed 
value.

Statistical Analyses: Different infiltration characteristics 
mentioned in the study were analyzed using ANOVA for a RCBD 
with three replications (Gomez and Gomez, 1984). Tukey’s 
Honestly Significant Difference (HSD) test was performed as a 
post hoc mean separation test (p < 0.05) employing “agricolae” 
(Mendiburu, and Simon, 2007) package in R studio (Version 
4.2.1).

Results and Discussion

Effects of CA–based practices on infiltration characteristics: 
The study found that different conservation agriculture and 
conventional tillage practices affected the infiltration rates, 
cumulative infiltration and steady state infiltration rate (Table 1). 
The IR varied across treatments, with the highest observed 
underthe PBB+R (21.02 cm hr ) and the lowest under the CT 

–1(9.94 cm hr ) (Table 1). The plots under ZT+R and PNB+R 
showed 80.7 and 93.8% higher IIR rate than CT and was at par 
with PBB+R. Plots without residue treatments, like PBB and PNB 
and ZT showed higher IR than CT by 61.7, 46.1 and 38.4%, 
respectively. The plots with residue retention have significantly 

improved IR (⁓43.0%) than plots without residue. The CA–based 
management practices showed 46.1–111.5% higher IR than the 
CT. Higher IRs under CApractices are likely due to the abundance 

1/2

–1

Description of infiltration models: In the present study, three 
infiltration models were assessed: one empirical model 
(Kostiakov model) and two physically based models (Green & 
Ampt Model and Philip model). The experimentally observed 
infiltration data were fitted to these models, and the parameters 
for each model were determined by employing the linear and 
nonlinear regression analysis. 

Empirical models

Kostiakov model: Kostiakov (1932) introduced one of the 
earliest models to estimate cumulative infiltration (CI), and the 
model is represented by the Eq. 2:

Here, “I”represents CI (cm), “t”denotes time (hr), and “a” 
and “b” are constants with a > 0 and 1 > b >0. These parameters, 
often referred to as Kostiakov’s time exponent, are affected by soil 
texture and initial moisture conditions. To derive the IR, 
represented by “i”, Eq. 2 was differentiated, yielding Eq. 3:

The parameters of the Kostiakov model were obtained by 
plotting the observed IR (i) against time (t). A power-law 
relationship was followed for curve fitting, where the coefficient in 
the equation was identified as “a”, and the exponent was 
determined to be “b”.

Physical process-based models

Green & Ampt Model: The Green & Ampt Model, introduced in 
1911, provides a method for estimating the IR (I), expressed by 
the following equation (Eq. 4):

–1i = i  + B × Ic

–1Here, “i”expressed in cm hr , “i ” is the steady state c

infiltration rate SSIR (cm hr ), “I” is the CI (cm), and “B” is a constant. 
–1A curve was generated by plotting “i” against “I ”, and a linear 

relationship was used to fit this curve. The intercept of the curve 
corresponds to “i ”, while the slope represents the constant “B”.c

Philip model: In 1957, Philip familiarized an infinite series 
solution to Richard's equation to found a connection between 
cumulative infiltration (CI) and soil properties. The relationship is 
expressed in Eq. 5:

The derivation of this equation leads to an expression for 
the infiltration rate, given by Eq. 6:

–1
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-(b+1)I = a× t

–bi = a × t

i = S × t  + K-1/21
2

1/2I = S × t  + K × t

MAE=
∑   IŶi-YiIi=1

n

n

 ∑ ARE=
1
N[ (    ) i=1

n ×100
Ŷi-Yi 

Yi

2RMSE =     ∑    (Ŷi-Yi)
n 

i=1

1

n 
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Table 1: Effect of CA– based practices on soil infiltration characteristics

Treatment Initial infiltration Steady state infiltration Cumulative Time to reach
rate (cm hr )

a a b aZT+R 17.96 5.35 18.58 2.62
b b b bZT 13.76 4.52 17.07 2.17
a a a aPBB+R 21.02 6.37 27.07 2.67
b b b bPBB 16.07 4.90 19.04 2.17
a a ab aPNB+R 19.26 5.93 21.77 2.58
b b b bPNB 14.52 4.52 17.81 2.33

c c c cCT 9.94 3.44 11.62 1.83

–1 –1rate (cm hr ) infiltration (cm) steady state (hr)

Table 2: Coefficients and parameters of infiltration models derived from least square fitting of experimental data under different CA–based practices

Treatment Kostiakov model Green &Ampt model Philip model

–1 –1 2  -0.5 –1a (cm ha ) b i (cm ha ) B (cm  ha ) S (cm hr ) K (cm ha )c

ZT+R 7.13 0.36 4.72 21.15 70.30 2.44
ZT 6.52 0.32 5.61 10.14 47.06 3.65
PBB+R 10.26 0.34 8.67 25.80 79.20 5.30
PBB 7.20 0.37 6.20 15.08 61.06 3.55
PNB+R 8.00 0.33 5.58 23.50 70.78 3.27
PNB 6.78 0.36 6.34 11.65 53.52 3.81
CT 4.30 0.35 3.41 5.81 37.34 1.92

–1

of macro-pores resulting fromthe roots of crop and activity of 
burrowing organisms (Atta-Darkwa et al., 2022). The CT, on other 
hand, deteriorates soil structure by exposing the soil organic 
carbon (SOC) to microbial oxidation, which affects soil 
aggregation, resulting in surface sealing, closed pores, 
decreased infiltration rates, increased runoff and erosion 
(Bhattacharya et al., 2020). Residue retention plots consistently 
demonstrated a significantly higher SSIR (35.4%) compared to 
plots where residue was removed. The PBB+R had the highest 

–1SSIR (6.37 cm hr ), depicting 85.2% increase over CT (3.44 cm 
–1hr ). Similarly, SSIRs in ZT+R and PNB+R were 55.5 and 72.4% 

higher, than the CT but at par with PBB+R. The improved SSIR 
under CA practices can be ascribed to higher SOC and enhanced 
soil aggregate stability (Amami et al., 2021). This favorable soil 
structural condition resulted in improved porosity leading to 
enhanced infiltration rates (Aggarwal et al., 2017). The PBB+R 
took significantly longer time to reach steady-state infiltration 
compared to CT, which may be attributed to superior soil 
structure, improved porosity and pore size distribution, and 
overall better soil health resulted from no tillage and 
residueretention (Amami et al., 2021). Additionally, CA practices 
resulted in a 46.9 to133.0% increase in CI compared to CT, 
aligning with previous studies that reported higher soil CIin wheat 
crop under CA in -based systems (Rai et al., 2018). In present 
study, PBB+R recorded the highest CI (27.07 cm), followed by 
PNB+R (21.77 cm), PBB (19.04 cm), ZT+R (18.58 cm), PNB 
(17.81 cm), ZT (17.07 cm), and CT (11.62 cm). The superior CI in 
PBB+R was mainly due to higher SOM, improved soil 

aggregation, more profuse macropores, and an increased 
permeable soil structure (Adak et al., 2019; Raj et al., 2023).

Effects of CA–basedpractices on estimated parameters of 
infiltration models: The estimated parametersof infiltration 
models—Kostiakov, Green & Ampt, and Philip—are shown in 
Table 2. It was observed that the model parameters differed 
among treatments. The “a” parameter of Kostiakov model reflects 
the initial infiltration rate. The highest estimated “a” value was 
noticed in the PBB+R (10.26 cm hr ) system, while the lowest 
was in the CT (4.30 cm hr ) production system. Compared to CT, 
“a” value in ZT+R, PBB+R, and PNB+R were higher by 65.8, 
138.6, and 86.0%, respectively (Table 2; Fig. 1). These findings 
suggest that the PBB+R system facilitates greater water 
infiltration into soilthan CT production system. 

The Kostiakov model exponent coefficient “b” ranged 
from 0.32 to 0.37, consistent with the value (b <1) reported by 
Atta-Darkwa et al., (2022). In Green & Ampt model, “ic” parameter 

–1represents SSIR, which was highest in PBB+R (8.67 cm hr ) and 
–1lowest in CT (3.41 cm hr ) (Table 2 and Fig. 2), aligning with 

experimental observations. However, the model tended to 
overestimate the SSIR across all treatments. The parameter “B” 
in the Green & Ampt model, which is influenced by the initial 
infiltration rate, was lowest in the CT (5.81 cm  hr ), matching field 
experiment observations (Fig. 2; Table 2). However, the model 
underestimated the initial infiltration rate for plots without residue 

–1

–1

2 –1
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Fig. 1: Kostiakov model [Infiltration rate (i) vs Cumulative time (t)] under different CA–based practices.
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-1/2Fig. 3: Philip model [infiltration rate (i)  vs t  ] under different CA–based practices.
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Table 3: Assessment of infiltration models under different CA–based practices

2Treatments R RMSE MAE ARE

Kostiakov model
ZT+R 0.99 0.39 0.27 0.17
ZT 0.92 0.84 0.75 0.76
PBB+R 0.95 1.26 0.96 0.41
PBB 0.92 1.08 0.89 0.69
PNB+R 0.98 0.53 0.43 0.18
PNB 0.94 0.93 0.76 0.49
CT 0.98 0.33 0.23 0.15
Green and Ampt model
ZT+R 0.97 0.77 0.72 1.57
ZT 0.83 1.17 1.08 4.20
PBB+R 0.78 2.24 2.09 2.79
PBB 0.80 1.66 1.56 5.82
PNB+R 0.98 0.65 0.53 1.05
PNB 0.79 1.71 1.41 10.14
CT 0.91 0.65 0.45 1.95
Philip model
ZT+R 0.99 0.31 0.24 0.27
ZT 0.90 0.92 0.76 2.83
PBB+R 0.91 1.46 1.37 2.83
PBB 0.90 1.15 1.83 3.40
PNB+R 0.99 0.38 0.30 0.29
PNB 0.91 1.05 0.89 6.76
CT 0.97 0.40 0.29 0.77
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