Aim: The study aimed to examine the toxic effects of furadan 3G in fish *Channa punctatus* by micronucleus induction assay and alteration of liver enzyme activities (ALT, AST and ALP). Further, the remedial potential of plant extract of *Melissa officinalis* against furadan 3G toxicity was also evaluated.

Methodology: The acclimatized fish were categorized into three groups; group 1: control, group 2: exposed to 1/10 LC₉₆ (96 hrs) of furadan 3G while group 3: exposed to 1/10 LC₉₆ (96 hrs) of furadan 3G along with 10 ppm concentration of *Melissa officinalis* extract. The discrepancy in micronuclei induction frequencies and liver enzyme activities were compared between groups at constant interval of 24 hrs up to 96 hrs, i.e., the end of exposure period.

Results: The results showed significant elevation of micronuclei induction frequency and level of liver enzyme activities in furadan 3G alone treated group in comparison to control group. However, the protective effect of *Melissa officinalis* observed in group 3 and observed values were found to be slightly lower than furadan 3G exposure group in a time dependent manner.

Interpretation: The study revealed that *Melissa officinalis* plant extract, after standardization, can be used as a safeguard in aquaculture for pesticide exposed fish.
Introduction

Furadan 3G (2, 3-dihydro-2, 2-dimethyl-7-benzofuranyl methylcarbamate) is used as a broad spectrum systemic carbamate pesticide for agriculture. Although, it is already banned in the United States and some European countries (Ruiz-Suárez et al., 2015), it is still used as a potent crop protection chemical in most of the Indian states (Mishra and Sharma, 2011). Furadan 3G is one of the preferred pesticides used to protect crops by killing insects, nematodes and parasites (Wandan et al., 2011). As a result of its widespread use, furadan 3G has been detected in ground, surface and rain water, air and food (Nagaraja and Bhaskara, 2006; Waite et al., 1992). Pesticides used in the agricultural fields are mobilized and get deposited in the aquatic ecosystem through surface run-offs (Gnanavelraja and Kandasamy, 2012). When furadan 3G like pesticides is used in paddy-cum fish culture, it causes health risk to fish due to their direct exposure. By consuming these unhealthy fish, humans are also at risk of variety of diseases (Zeljezic et al., 2008).

Furadan 3G has also been documented as a teratogenic, embryotoxic (Gupta, 1994) and genotoxic compound (Chauhan et al., 2000; Naravaneni and Jamil, 2005; Zeljezic et al., 2007). Exposure of furadan 3G causes various genotoxic, biochemical and endocrine anomalies in organisms like micronuclei formation in mice (Chauhan et al., 2000). Furadan 3G in particular, impairs nerve transmission by inhibiting enzyme acetylcholine esterase (AChE) (Usmani et al., 2004; Zeljezic et al., 2008). Acetylcholinesterase inhibition generates oxidative stress due to increased production of free radicals (Militovic et al., 2006). In addition to affecting enzymes, furadan 3G generated free radicals may alter the property of DNA, RNA and proteins (Wu and Cederbaum, 2003). Hence, application of pesticides as crop protection chemical poses inevitable risk for human health; therefore a search for suitable measures that can counter their ill effects is desirable.

Eco-friendly approach by using natural remedy to protect crops is the need of the hour. Several plant secondary metabolites are known to possess an effective antioxidative potential and have been reported to counter toxicity generated by xenobiotics (Dai and Mumper, 2010; Sowndhararajan and Kang, 2013). Melissa officinalis is a perennial herb and has been reported for its excellent anti-oxidative properties (Dastmalchi 2013). is a perennial herb and has been potential and have been reported to counter toxicity generated by metabolites are known to possess an effective antioxidative

Materials and Methods

Animals and treatment: Healthy and live fresh water teleostian fish, Channa punctatus (14.5 ± 1.0 cm and 30 ± 2.0 g) were procured from local lentic habitats of Lucknow, India. They were given prophylactic treatment of formalin (0.4%) for 10 min, followed by KMnO₄ (1 mg l⁻¹) for 1 hr to keep away the dermal infections. Fish were acclimatized for 10 days in large glass aquaria (100x40x40cm³) prior to experimentation. During acclimatization period, fish were maintained in standard laboratory conditions (Temperature: 14-22°C, dissolved oxygen: 6.62 - 6.76 mg l⁻¹ and alkalinity: 62- 68 mg l⁻¹). Fish were fed with minced goat liver and artificial fish food, Tokyo.

Collection and preparation of plant extract: The whole plant of Melissa officinalis was collected from local agricultural fields of Lucknow, India, which was identified by the experts from the Department of Botany, University of Lucknow, Lucknow. The collected plant material of Melissa officinalis was washed thoroughly in tap water and dried at room temperature (31°C±2°C) in shed for a minimum of 15 days. After drying, plant material was powdered with the help of an electric grinder. The powder of Melissa officinalis was soaked in 50% aqueous-ethanol for one week and then the filtered extract was concentrated to semi solid state by vacuum evaporator. The concentrated semi solid ethanolic extract of Melissa officinalis so obtained was stored in refrigerator at 4°C for further experimental work.

Determination of median lethal concentration of furadan 3G: For determination of 96 hr-LC₅₀ of furadan 3G in fish, different set of fish were exposed to different logarithmic concentrations of furadan 3G prepared in non-toxic acetone (Pickering et al., 1962). Proper oxygenation in aquaria was maintained with the help of stone diffusers. The mortality of fish was recorded at time intervals of 24 hr, 48 hr, 72 hr, and 96 hr, and dead fish were removed immediately. Experiments were repeated thrice to verify their reproducibility. The value of 96 hr-LC₅₀ of furadan 3G for fish Channa punctatus was determined by Trimmed Spearman-Karber Method (Hamilton et al., 1978)

Experimental design: Ten day acclimatized fish were divided into three groups taking ten fish in each group. Among these, group 1 served as control; group 2 was exposed to 1/10ⁿ concentration of 96 hr-LC₅₀ of furadan 3G (0.09 mg l⁻¹) while group 3 was exposed to 1/10ⁿ concentration of 96 hr-LC₅₀ of furadan 3G (0.09 mg l⁻¹) along with 10 ppm of Melissa officinalis. At the end of the specified exposure periods for 24, 48, 72, and 96 hrs, blood samples were taken by caudal vessel puncture using disposable syringes and kept in vials without using any anticoagulant and smears were prepared at the same time to observe micronuclei (MN) induction before coagulation. Remaining blood was left to stand at room temperature to clot for 30 - 40 min and then...
Amelioration of furadan 3G induced toxicity in *C. punctatus* by *M. officinalis*

Fig. 1: Normal erythrocytes of *Channa punctatus*

Fig. 2: Micronuclei in erythrocytes of *Channa punctatus*

Fig. 3: Graphical representation of alterations in micronuclei frequencies in erythrocytes of *Channa punctatus* in different experimental groups after 24, 48, 72 and 96 hrs. exposure periods. The Group 1 represents Control group without any exposure, while Group 2 and 3 represent treatment groups exposed with 96hr-LC₅₀/10 furadan 3G and 96hr-LC₅₀/10 furadan 3G+10 ppm *Melissa officinalis*, respectively. * Values are statistically significant at p<0.05 level with respect to the control.
centrifuged at 3000 rpm for 10 min to obtain serum for enzyme activity analysis from each group of fish.

Micronuclei assay: Peripheral blood samples were smeared on cleaned microscopic slides and fixed with absolute methanol for 5 min. After the fixation step, slides were stained with May-Grunwald’s solution 1 and solution 2 for 3 and 5 min, respectively followed by 5% Giemsa staining of slides for 30 min. Staining protocol was used by following the standard protocol. Overnight dried slides were further mounted with DPX and observed under oil immersion microscope (Nikon Corporation K 12432) using 40/100X objective lenses. A minimum of 1000 erythrocytes for each specimen were examined. The scoring of micronuclei were done by following the criteria of Fenech et al. (2011).

Estimation of liver marker enzymes: Activity of liver marker enzymes, aspartate aminotransferase (AST) was recorded with the help of Ecoline kit (AST: 11767400011730) by following IFCC method (Bergmeyer et al., 1976), alanine aminotransferase (ALT) with the help of Ecoline kit (ALT: 11766300011730) by following IFCC method (Bergmeyer, 1980), while alkaline phosphatase (ALP) was estimated by using Ecoline kit: (ALP:11767700011730) following the method of Belfield and Goldberg (1971).

Statistical analysis: Statistical analyses were performed with the help of SPSS (ver. 20.0) software. For the calculation of significance, one-way ANOVA with post hoc analysis was carried out. The acceptance level of significance was taken as p<0.05.

Results and Discussion

96 hr-LC₃₀ of furadan 3G for Channa punctatus: The value of LC₃₀ (96 hr) of furadan 3G was determined as 0.9 mg l⁻¹ for fish species Channa punctatus. For conducting further experiments, 1/10⁰ concentration of 96 hr-LC₃₀ of furadan 3G i.e., 0.09 mg l⁻¹ was selected for in vivo studies.

Effect of furadan 3G on micronuclei induction: Erythrocytes of healthy Channa punctatus were observed as elliptical shape with centrally located nucleus (Fig.1). Along with the centrally located large nucleus, some fractions of similar round structure were also observed by Giemsa staining in erythrocytes, usually considered as micronuclei, which were found in the range of 1/10⁶ to 1/3⁵ fractions of actual nucleus size (Fig.2) (Fenech et al., 2011). The frequencies of micronuclei induction in erythrocytes of different groups of Channa punctatus exposed to furadan 3G is summarized in Fig. 3. Fish exposed to 1/10⁶ 96 hr-LC₃₀ of furadan 3G (Group 2) showed a significant (p<0.05; Fig. 2) increase in the frequency of micronuclei induction in comparison to control groups for different exposure periods viz., 24, 48, 72, and 96 hrs. However, the frequencies of micronuclei in group 3 (exposed to 1/10⁰ concentration of furadan 3G + 10 ppm of Melissa officinalis) were observed significantly (p<0.05) reduced in comparison to group 2.

Effect of furadan 3G on activities of liver enzymes: The enzymatic activities of AST, ALT and ALP were progressively increased significantly (p<0.05) with the exposure periods in a time dependent manner in group 2, which were treated with furadan 3G. However, in group 3, fish were given treatment of furadan 3G along with Melissa officinalis extract and the activities of AST, ALT and ALP were found to be significantly reduced in comparison to group 2 (p<0.05; Fig. 4). The reduction of AST, ALT and ALP activities in group 3 were recorded in an exposure dependent manner and maximum reduction was noted after 96 hr of exposure period in comparison to group 2.

Fish erythrocytes contain clearly distinguished, centrally situated nucleus with ample amount of cytoplasm, therefore, any anomalous change in nucleus can be easily detected. In the present study, Channa punctatus of group 2 exposed to furadan 3G showed significant elevated levels of micronuclei induction over control (Group 1) in an exposure dependent manner (p<0.05). The present results are in agreement with the findings of Gadhve et al. (2014) who found an increase in micronuclei induction in erythrocytes of Labeo rohita after 1-cyhalothrin exposure. Similar results were also reported by Vera-Candioti et al. (2013) in fish after exposure of another carbamate based pesticide, pirimicarb. Increased MI induction was also evaluated by Bhatnagar et al. (2016) after acute toxicity of chlorpyrifos exposure in freshwater fish, Cirrhinus mrigala and Pandey et al. (2014) after profenofos exposure in Channa punctatus.

Micronuclei are formed due to several reasons, such as improper chromosomes segregation during meiosis or damaged DNA fragments (Fenech et al., 2011). Luzhna et al. (2013) demonstrated that spindle failure induced abnormalities during meiosis is the key reason to induce micronuclei formation rather than chromosome breakage. The present study also demonstrates that Melissa officinalis treatment along with furadan 3G in group 3 fish showed a significant decline in the frequencies of micronuclei induction in comparison to group 2 (p<0.05). The micronuclei induction frequency after 24 hr of exposure in group 3 did not show any significant differences in comparison to group 2, however, in the later exposure periods of 48, 72 and 96 hrs, frequencies of micronuclei induction in group 3 decreased significantly (p<0.05) in comparison to group 2, but insignificant as compared to group 1. This exposure dependent reduction in the frequency of micronuclei by applying Melissa officinalis has suggested its ameliorative potential against furadan 3G induced genotoxicity. Moreover, in addition to genotoxic insults furadan 3G has been also reported to alter liver biochemistry. The results of the present study showed a significant increase in the activities of liver marker enzymes (AST, ALT and ALP) under the influence of pesticide, furadan 3G. Similar findings of alterations in liver enzymes in blood of C. gariepinus exposed to carbofuran doses were observed by Harabawy and Ibrahim (2014).

Pesticides generally affect biologically active molecules viz., proteins, carbohydrates and lipids (Singh and Sharma, 1998). In the present investigation, alteration in enzyme levels of liver tissues in group 2 animals indicates that a higher activity of liver enzymes is required to detoxify the toxicants introduced in the body under furadan 3G exposure. Enhancement in enzyme level of liver
Fig. 4: (A) Graphical representation of alterations in AST enzyme activities in blood of *Channa punctatus* in different experimental groups; (B) Alterations in ALT enzyme activities in blood of *Channa punctatus* in different experimental groups; (C) Alterations in ALP enzyme activities in blood of *Channa punctatus* in different experimental groups. The Group 1 represent Control group without any exposure, while Group 2 and 3 represents treatment groups exposed with 96hr-LC$_{50}$/10 furadan 3G and 96hr-LC$_{50}$/10 furadan 3G + 10 ppm *Melissa officinalis*, respectively. * Values are statistically significant at p<0.05 level with respect to the control.
is part of an important mechanism for transformation and removal of toxic chemicals from the body. Thus, by introducing Melissa officinalis extract along with sub-lethal fraction of furadan 3G (group 3), liver enzymes activities reached towards the normal value, which may be due to amelioration of furadan 3G toxicity. Melissa officinalis extract is able to suppress the toxic action of furadan 3G, as measured in terms of recovery of micronuclei frequency and level of liver enzymes in group 3 towards control. This protective response of Melissa officinalis could be due to its antioxidant property which helps in maintenance of cellular and nuclear health.

Plant extract contains a number of potent antioxidants including flavonoids, phenolic acids and tocopherols and have shown their ameliorative potential against toxic effects of pesticides and other toxicants (Dastmalchi et al., 2008). Ameliorative role of Melissa officinalis against manganese toxicity has also been demonstrated by Martins et al. (2012) in mice. Similar protective role of Mentha piperita against benzo[a]pyrene-induced lung carcinogenicity and mutagenicity in Swiss albino mice has been established by Samarth et al. (2006). The findings of the present study also demonstrate the protective response of Melissa officinalis in fish Channa punctatus treated with sub-lethal concentration of furadan 3G, evident by a significant reduction in the activities of liver marker enzymes AST (p<0.05), ALT (p<0.05) and ALP (p<0.05) and induction of micronuclei (p<0.05), a cytotoxic end marker. Thus, the plant extract in reference can be effectively utilized for fish health management in aquaculture practices, particularly in paddy-cum fish culture where carbofuran application is more prevalent.

Acknowledgments

One of us, Vidyanand Tiwari, gratefully acknowledge the UGC, New Delhi, India for providing financial support in form of Major Research Project (Award no. F-37-426/2009 (SR). Authors are thankful to the Head, Department of Zoology, University of Lucknow, India for providing necessary facilities.

References

Amelioration of furadan 3G induced toxicity in C. punctatus by M. officinalis

(2014)

Chemico-Biological Interactions, 150, 221-32 (2004)