Assessment of natural radionuclides and chemical constituents in commonly used hair dyes in Saudi Arabia

Aim: Use of hair dyes has dramatically increased throughout the world, so there is an urgent need to human awareness of the radiological hazard potentially arising by using hair dyes periodically to reducing of use them. The main objective of the study was to estimate the radiological risk due to natural radionuclides and chemical constituents from the most common of hair dyes received by the consumer in Saudi Arabia.

Methodology: A total of fifty-one sample of seventeen hair dyes with common usage in Saudi Arabia imported from different countries. Radionuclides (K, Th, Ra and U) in blonde, brown and black hair dyes were determined HPGe spectrometer. Twenty-four elements and their oxide concentrations were determined using ARL QUANT’X Energy-Dispersive X-ray Fluorescence spectrometer.

Results: The mean concentrations of K in blonde dyes was above the permissible limit. Others naturally occurring radionuclides were found to have mean activity concentrations below the permissible limit. Uranium-238 was present in measurable values in most samples. The calculated radiological hazard, absorbed dose rate, Annual effective dose rate and Radium equivalent for all samples were below the recommended value, except in one blonde dye sample. Most elements exceeded the reference level.

Interpretation: This is the first study for determining the radiological risks associated with usage the hair dyes (black, brown and blonde). From these measurements, it can be concluded that it should avoid the use of hair dyes periodically. Further, the obtained results will be of interest to those involved in health research through to compiling evidence on the subject.
Introduction

The use of hair dyes has been traced back to thousands of years. Herbal dyes are generally safe, specifically Henna, Buxus dioica and Isatis (Nohnynek et al., 2004), but various health problems arises due to use of these chemical dyes. Commercial hair dyes are poor in quality and highly toxic (Haluk et al., 2014). Some dye manufacturing companies may manipulate the consumer’s health and add the synthetic organic compounds for coloration. Ammonia present in the chemical dyes open the hair cuticle to facilitate the oxidation process that lightens the natural color of the hair and it also helps in developing the added color. Hair dyes are amongst the most problematic pollutants because of their toxic effect on humans (Nohnynek et al., 2004; Gaffar et al., 2014). The radiological risk in natural hair dyes come mainly from natural radionuclides 210Pb, 210Po and 40K through transmission of radionuclides from soil to plants (Chakraborty et al., 2013).

Determination of radioactivity in hair dyes is important for human health (Pietrzak-Flis et al., 2001). As these hair dyes contain chemicals like p-phenylenediamine, hydrogen peroxide and resorcinol (Fernández-Vozmediano et al., 2011; Al-Suwaidi and Ahmed, 2010). They can cause rash and dermatitis of eyes, throat, scalp, skin and respiratory system, hence while using them safety glasses, gloves, and good ventilation is essential. The dark colored dyes are more Toxic as they contain higher level of chemicals (Broides et al., 2011; Le Coz et al., 2000). Some hair dye products have been found to contain mutagenic & carcinogetic compounds. Coal tar colors are derived from the tar found in bituminous coal. Some coal tar colors also contain heavy metals. In view of the above, the present study was carried out to estimate the radiological risks due to natural radionuclides and chemical constituents from the most common hair dyes used in Saudi Arabia.

Materials and Methods

Sample preparation and assessment of radioactivity: A total of fifty one samples of seventeen hair dyes of blonde, brown and black color were purchased from local market of Saudi Arabia and numbered as Hd1-Hd5(blond), Hd6-Hd11(brown) and Hd12-Hd17 (black), respectively. The samples were dried at 110 °C. The samples were homogenized. Then the homogenized powdered samples stored in Marinelli beaker were sealed for about one month to get secular equilibrium for 226Ra and 232Th. The samples were dried at 110 °C. The gamma background level was estimated with an empty polyethylene Marinelli beaker. The background was measured under similar above mentioned conditions. The net peak count rate of each sample was obtained by subtracting the gamma ray background. The energy and efficiency of gamma spectrometer was calibrated using standard sources: 228Th, 232Th, 232U, 238U, 235U, 239Pu, 241Pu, 228Ra, and mixed source (containing 137Cs, 60Co, 90Sr, 90Y, 138Cs, 152Eu, 125I, 153Gd, 133Ba, 133La, 134Ce) (Bajoga et al., 2015). The activity concentration of 226Ra and 232Th was determined assuming the following gamma lines: 1764 keV, 11220 keV, 609 keV and 351 keV of 238Ra; 860 keV and 582 keV of 228Th; 986 keV, 811 keV, 338 keV, for 232Ac and 238 keV of 226Ra. The activity concentration of 40K was determined using a single peak area of 1460 keV (Chandrashekara and Somashekarappa, 2016).

The absorbed dose rate (D_{air}) in air from external gamma radiation at 1 m above ground level due to the presence of uniformly distributed natural radionuclides in measured soils was calculated by the following formula (Beretka and Mathew, 1985): $\text{DR} \times 10^{-6} \times h/yr = 0.0417 \times C_{K} + 0.642 \times C_{U} + 0.604 \times C_{Th}$ (1).

Where, C_K, C_U and C_{Th} are the activity concentrations (in Bq/kg) for 40K, 232U and 232Th, respectively. Secular equilibrium was assumed for dose calculation. To assess the radiological hazard due to natural radionuclide 40K, 232Th and 232U, radium equivalent activity was calculated by the following formula (Abdulhussein et al., 2016):

$$\text{RE}(\text{Bq/kg}) = C_{232U} + 1.43 C_{232Th} + 0.077 C_{232Th} \leq 7.6 \text{micron (0.3 mil)} \text{ was used. All the measurements were obtained by running each sample three times. The average concentration was obtained from the mean values of peak area.}$$

Heavy metal analysis: The concentration of following heavy metals and their oxides were estimated: Ca, Na, Mg, Si, Al, K, Fe, S, Ba, Sr, Sn, Sb, Mo, Rh, Ru, Ti, Pd, Pb, Br, Ag, Zn, W, In, Nb, NaO, MgO, Al₂O₃, SiO₂, SO₃, KO, CaO, TiO₂, Fe₂O₃, ZnO, SrO, Bro, Pbo, Nb₂O₅, MoO₃, Ru₂O₃, Rh₂O₃, PdO, AgO, InO, SnO₂, Sb₂O₅, BaO and WO₃ by ARL QUANTX Energy-Dispersive X-ray Fluorescence spectrometer (EDXRF). EDXRF provides a rapid and non-destructive method for the analysis of major and trace elements of X-rays of elements across the broadest range of samples, including bulk solids, granules, powders, thin films, liquids, geological and biological samples. To detect the X-rays characteristic, a Peltier-cooled Si (Li) detector (PCD) with 15 re5eV FWHM solution for 5.89eV X-rays at 1,500 cps and Beryllium (Be) Window ≤ 7.6 micron (0.3 mil) was used. The data acquisition was employed by using Multi-Channel Analyzer 32-bit, 4096 channel MCA (Budaka et al., 2006). The samples were dried at 60°C in an oven. The powder obtained was sieved through a 300 mesh sieve and the samples were then transferred onto a polyethylene myler film. A circular sample radius of approximately 3 cm was used. All the measurements were obtained by running each sample three times. The average concentration was obtained from the mean values of peak area.
Results and Discussion

Activity concentration in hair dye samples (Bq kg⁻¹): The average activity concentration due to 238U, 226Ra, 232Th, 40K radionuclides in brown, black hair and blonde hair dyes is given in Table 1. Abdel Ghany et al. (2014) estimated radioactivity in textile dyes. The mean activity concentration of 40K, 232Th and 238U were 565, 1.15 and 29.37 Bq kg⁻¹, respectively. The absorbed dose rates were below the maximum admissible value, except for yellow dye sample (166 nGy/h). Also, the radium equivalents for all the studied samples were lower than the International recommended limit (35, 35, 30, 400 Bq kg⁻¹ for 226Ra, 232Th and 40K, respectively) (UNSCEAR, 2000).

A comparison between the mean activity concentration of natural radionuclides in studied samples with the recommended limit is shown in Fig. 1 (A-D). The average activity concentrations of 40K, 226Ra and 232Th in blonde samples varied from ND to 6767.23 Bq kg⁻¹, ND to 5.86 Bq kg⁻¹ and ND to 5.50Bq kg⁻¹. The results were found to be lower than the global median activity concentration of 226Ra and 232Th, respectively. Moreover, from Table 1, it can be observed that the maximum of average activity concentration due to 40K in sample Hd1, Hd4 and Hd5 was about 11, 17 and 10.7 times higher than the global median activity concentrations of 40K. The average activity concentration of brown and black dyes was below the maximum worldwide values. The concentration of 40K was also below the maximum worldwide acceptable values, except for Hd8, Hd9 and Hd14 dye samples, which was about 28.5%, 14.5% and 14% higher than the maximum permissible limit. As observed from Table 2, 238U average concentrations ranged from ND to 27.72 Bq kg⁻¹ in blonde dyes, 8.18 to 41.37 Bq kg⁻¹ in brown dyes and 8.18 to 27.26 Bq kg⁻¹ in black samples, respectively. All the values were lower than the permissible limit (35 Bq kg⁻¹), except for sample Hd9 (41.37Bq kg⁻¹). A slight decrease in the mean activity concentration of 226Ra and 232Th was noted in brown hair dyes than in black hair dyes.

The estimated absorbed dose rate (Table 2) ranged from 3.12 to 186.47 nGy h⁻¹ in different hair dye samples. An increased dose rate was noted in blonde samples Hd1 (186.47), Hd4 (283.33) and Hd5 (180.80 nGy h⁻¹) due to higher radioactivity of 40K. These values were higher than the permissible limit of 55 nGy h⁻¹ (UNSCEAR, 2000). Therefore, the impact of radiation exposure on the workers and consumers for these samples cannot be ignored.

As tabulated in Table 2, radium equivalent activity varied from 7.09 to 523.53 Bq kg⁻¹. The highest value was detected in sample Hd4, which was 41.5% higher than the safety limit of 370
Table 2: Radiological hazard effects: Absorbed dose rates (D), Radium equivalent activity (Raeq) and Annual effective dose rate (AEDR) in hair and black samples. All the other estimated values were less than the permissible limit. Table 2 summarizes the results of the annual effective dose rate. The annual indoor effective dose rate ranged from 0.02-1.39 mSv/y, 0.02-0.15 and 0.02-0.16 in blonde, brown and black samples, respectively, which were lower than the AEDR permission limit of 1 mSv/y, as reported by UNSCEAR (2000), except for Hd4 which was about 39% (1.39 mSv/y) higher than the average value. It was also observed that the AEDR value for Hd1 and Hd5 samples were close to the maximum permissible limit. This implies that hair dyes products, if used for multiple times and longer duration may become a source of significant radiological hazards. As compared to the recommended values, the D value was about 2.41 times higher, while the mean Ra and AEDE values were less than the recommended level.

In the present study, twenty-four elements (Ca, Na, Mg, Si, Al, K, Fe, S, Ba, Sr, Sn, Sb, Mo, Rh, Ru, Ti, Pd, Pb, Br, Ag, Zn, W, In and Nb) and their oxides (Na₂O, MgO, Al₂O₃, SiO₂, SO₂, K₂O, CaO, TiO₂, Fe₂O₃, ZnO, SrO, MoO₃, RuO₂, PbO, Br₂O₅, PdO, Ag₂O, In₂O₃, SnO₂, Sb₂O₃, BaO and WO₃) were determined. The study revealed that most of the elements present in each dye were higher than the maximum permissible limit (WHO, 2005). Table 3 summarizes the range of mean concentration of elements and their oxides, also it records the lowest and highest values of element concentration in the oxide composition.

Singh et al. (2007) reported the toxicological effect and risk evaluation of nanostructured materials on human health and their safety assessment. Human exposure to these materials is inevitable as they can enter the body via drink, food and medicine. They may affect various tissues and organs such as liver, brain, heart, colon, kidney, blood, spleen, bone etc., and may cause cytotoxic effects like inhibition and deformation of cell growth leading to several diseases in humans. Their toxicity grades and interactions with biological systems hugely depend on upon their properties like concentration, size, solubility, stability and biological and chemical properties.

Nagajyoti et al. (2010) investigated the occurrence and toxicity in plants due to accumulation of zinc, cadmium, copper, mercury, chromium, lead, arsenic, cobalt, nickel, manganese and iron. These metals at excessive level are toxic to plants and affect the ecosystem. Sixty-three samples of henna products were analysed by Bernth and Hansen (2005). Pb has been observed in several samples with concentration ranging from 0.00005% to 0.0002 %. Also p-phenylenediamine was observed in three samples varying from 0.003% to 17%. The highest concentration exceeded the limit stated in the Directive on Cosmetics. Sulphur and its oxide were recorded in eleven samples. The concentration of sulphur varied from 1.80% (Hd14, black dye) to 98.86% (Hd7 brown dye). The SO₂ content ranged from 3.545% - 99.66%. Highest concentration was reported in brown sample (Hd8) and the lowest value was observed in brown dyes.

Table 1: Average activity concentrations of 238U, 226Ra, 232Th and 40K in hair dye samples

<table>
<thead>
<tr>
<th>Sample code</th>
<th>U 238</th>
<th>Ra 226</th>
<th>Th 232</th>
<th>K 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hd1</td>
<td>23.67±3.44</td>
<td>3.58±0.60</td>
<td>ND</td>
<td>4411.84±95.58</td>
</tr>
<tr>
<td>Hd2</td>
<td>8.27±1.72</td>
<td>5.86±0.82</td>
<td>5.50±0.79</td>
<td>82.65±7.01</td>
</tr>
<tr>
<td>Hd3</td>
<td>15.24±1.92</td>
<td>2.94±0.44</td>
<td>2.92±0.45</td>
<td>ND</td>
</tr>
<tr>
<td>Hd4</td>
<td>27.72±3.04</td>
<td>2.45±0.40</td>
<td>ND</td>
<td>6767.23±100.60</td>
</tr>
<tr>
<td>Mean</td>
<td>14.98±2.03</td>
<td>2.97±0.45</td>
<td>2.44±0.36</td>
<td>3108.42±56.77</td>
</tr>
</tbody>
</table>

ND : Not detectable
Detection of natural nuclides in hair dyes

Sample (Hd14) kg\(^{-1}\) where S concentration in their oxides was 39.91% and 1.42%, respectively. The concentration of sulphur in the present study exceeded the calculated mean sulphur value of 17.266 mg kg\(^{-1}\) (≈ 0.001726%) (Pednekar and Raman, 2013). Sulphur exposure causes skin allergy and irritation of eyes, respiratory, moreover occupational exposure to sulphur has been associated with lung damage (Pean et al., 1995).

Silicon was detected in all the dye samples ranging from 1.93% to 40.20%, except in Hd6, Hd7, Hd13 and Hd17. Silicon dioxide SiO\(_2\) was present in all the samples varying between 2.923-38.27%, except for Hd6, Hd8, Hd13 and Hd17. All these values exceeded the range value 0.0017-0.10% of silicon concentrations as reported by Bernth and Hansen (2005). Chang et al. (2007) examined the biological activity of normal fibroblast and tumor cells with varying doses of amorphous silica or composite nanoparticles of silica and chitosan. The silica nanoparticles were found to be nontoxic at low doses while high doses decreased cell viability. High dose of silica also damage cell membrane. The fibroblast cells were more susceptible to damage caused by silica exposure than tumor cells. The silica–chitosan composite nanoparticles caused lower inhibition in cell proliferation, as well as lower membrane damage.

Tin and Antimony were present in all the dye samples, ranging from 0.006% to 0.067% and 0.0046% to 0.055%, except in Hd9, Hd10, Hd11, Hd12 and Hd16. Tin dioxide SnO\(_2\) and antimony trioxide Sb\(_2\)O\(_3\) were noted in all the samples ranging from 0.0027% -0.0219% and 0.0017% to 0.0150%, respectively, except in Hd8, Hd9, Hd11, Hd12 and Hd16. The concentration of Sn and Sb was far greater than the range of Sn (0.00005-0.000089)% and Sb concentration. The average concentration of Sn and Sb was far greater than the range of Sn (0.00005-0.000089)% and Sb concentration. The average concentration of Sn and Sb varied from 0.0085% to 0.113% and 0.022% to 0.308%. Indium (III) oxide (In\(_2\)O\(_3\)) and Niobium pentoxide (Nb\(_2\)O\(_5\)) ranged from 0.0017% to 0.051% and 0.0067% to 0.227% and were detected in all hair dye samples. All the samples accumulated Indium and Niobium elements above mention value (Bernth and Hansen, 2005).

Niobium and its compounds may be toxic, however no reports of human intoxication has been reported. The study on laboratory animals have revealed that inhalation of Nb\(_2\)O\(_5\) or NbN leads to fibrosis of lungs at exposure level of 40 mg m\(^{-3}\). Nb\(_2\)O\(_5\) decompose on heating and emits toxic vapors of niobium (Nowak

Table 3: The range of mean concentrations of elements and their oxides (%) hair dyes

<table>
<thead>
<tr>
<th>Element</th>
<th>Range</th>
<th>Oxide</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>14.006-45.49</td>
<td>Na(_2)O</td>
<td>16.45-38.97</td>
</tr>
<tr>
<td>Mg</td>
<td>2.52-32.78</td>
<td>MgO</td>
<td>3.40-31.79</td>
</tr>
<tr>
<td>Al</td>
<td>1.31-13.58</td>
<td>Al(_2)O(_3)</td>
<td>1.95-11.28</td>
</tr>
<tr>
<td>Si</td>
<td>1.93-40.20</td>
<td>SiO(_2)</td>
<td>2.923-38.27</td>
</tr>
<tr>
<td>S</td>
<td>1.60-98.86</td>
<td>SO(_2)</td>
<td>3.545-99.66</td>
</tr>
<tr>
<td>K</td>
<td>2.61-34.56</td>
<td>K(_2)O</td>
<td>0.31-15.79</td>
</tr>
<tr>
<td>Ca</td>
<td>0.141-85.76</td>
<td>CaO</td>
<td>0.192-78.75</td>
</tr>
<tr>
<td>Ti</td>
<td>0.183-2.98</td>
<td>TiO(_2)</td>
<td>0.080-4.205</td>
</tr>
<tr>
<td>Fe</td>
<td>0.281-10.45</td>
<td>FeO(_2)</td>
<td>0.075-5.1275</td>
</tr>
<tr>
<td>Zn</td>
<td>4.81-28.45</td>
<td>ZnO</td>
<td>1.04-13.28</td>
</tr>
<tr>
<td>Br</td>
<td>ND-0.187</td>
<td>BrO</td>
<td>ND</td>
</tr>
<tr>
<td>Sr</td>
<td>0.055-0.587</td>
<td>SrO</td>
<td>0.0368-0.3064</td>
</tr>
<tr>
<td>Nb</td>
<td>0.022-0.308</td>
<td>Nb(_2)O(_5)</td>
<td>0.0067-0.227</td>
</tr>
<tr>
<td>Mo</td>
<td>0.0127-0.224</td>
<td>MoO(_3)</td>
<td>0.0078-0.174</td>
</tr>
<tr>
<td>Ru</td>
<td>0.0062-0.115</td>
<td>RuO(_4)</td>
<td>0.0034-0.077</td>
</tr>
<tr>
<td>Rh</td>
<td>0.0042-0.092</td>
<td>RhO(_2)</td>
<td>0.0023-0.0547</td>
</tr>
<tr>
<td>Pd</td>
<td>ND-0.0132</td>
<td>PdO</td>
<td>0.0086-0.0189</td>
</tr>
<tr>
<td>Ag</td>
<td>0.0083-0.014</td>
<td>Ag(_2)O</td>
<td>0.0064-0.0150</td>
</tr>
<tr>
<td>In</td>
<td>0.0085-0.113</td>
<td>In(_2)O(_3)</td>
<td>0.0031-0.051</td>
</tr>
<tr>
<td>Sn</td>
<td>0.006-0.067</td>
<td>SnO(_2)</td>
<td>0.0027-0.0219</td>
</tr>
<tr>
<td>Sb</td>
<td>0.0046-0.055</td>
<td>Sb(_2)O(_3)</td>
<td>0.0017-0.0150</td>
</tr>
<tr>
<td>Ba</td>
<td>0.73-68.85</td>
<td>BaO</td>
<td>0.243-53.93</td>
</tr>
<tr>
<td>W</td>
<td>ND-2.02</td>
<td>WO(_2)</td>
<td>ND-0.98</td>
</tr>
<tr>
<td>Pb</td>
<td>0.0215-0.044</td>
<td>PbO</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND : Not detectable

Table 3: The range of mean concentrations of elements and their oxides (%) hair dyes

Journal of Environmental Biology, May 2017
Bromine was only present in sample Hd8 (0.187%). Debrah et al. (2011) recorded Br concentration between BDL to (0.001395%). Bromine can damage the nervous system and thyroid gland. Few compounds of organic bromine like ethylene bromine are carcinogenic. Tungsten and its trioxide was only noted in Hd13 (2.02%) and 0.98%, which was much higher than the range of permissible limit (0.000005-0.000017)% as reported by Bernth and Hansen (2005). Ruthenium and Rhodium were monitored in all samples except in Hd3 (blonde hair dye), Hd8 (brown hair dye) and Hd14 (black hair dye). Highest concentration of them was noted in Hd12, whereas lowest value was detected in sample Hd1. Ruthenium tetroxide (R₂O₆) and Rhodium sesquioxide (Rh₂O₃) were detected in all the samples, except for Hd3, Hd7, Hd14 and Hd15 samples. The highest concentration of RuO₂ and Rh₂O₃ was found in H16 (0.0777% and 0.0547%). The lowest value of RuO₂ (0.0034%) and Rh₂O₃ (0.0023%) was noted in Hd1. Mo and MoO₂ was present in all samples, except to two black hair dye samples (Hd13 and Hd15), ranging from 0.0127% to 0.224% and from 0.0078% to 0.174%, respectively. However, Mo average concentration exceeded the values reported by Bernth and Hansen (2005), while MoO accumulated Mo below the limit except, hair dyes samples Hd9, Hd10, Hd11, and Hd15 (2005). The MoO concentration varied from 0.0075% (Hd1) to 0.174% (Hd10). Zinc was found only in two samples Hd13 and Hd15 (28.45% and 4.81%). ZnO was found in Hd7, Hd13 and Hd15 samples (1.04, 13.280% and 1.041%) respectively. Zinc content was lower than the maximum permissible limit of Zn (0.005 %) (Shah et al., 2013). Jeng and Swanson (2006) assessed the toxicity profile of metal nano oxides (ZnO, TiO₂, Fe₂O₃ and Al₂O₃) in mammalian cells. The microscopic studies showed that nanoparticle-exposed neuro-2A cells were abnormal in size, displaying cellular shrinkage and detachment from the surface of flasks. ZnO was highly toxic, whereas Al₂O₃ was moderately toxic and Fe₂O₃ and TiO₂ exhibited slight toxicity at high concentration. Pb, Ag and Ti metals were present in few samples only. Pb appeared only in sample Hd11 (0.044%) and Hd16 (0.0215%) which was above the acceptable limit of Pb in (0.0005- 0.001%). PbO was not present in any of the dye samples. Ag was found in sample Hd11 (0.014%) and Hd16 (0.0083%) only, Silver oxide (Ag₂O) was found only in sample Hd11 (0.0104%), Hd14 (0.0150%) and Hd16, (0.0064%). Ag concentration exceeded the permissible limit (0.000001-0.00008%) as recommended by WHO (2005). Ti was present in four samples Hd3 (1.10%), Hd6 (0.183%), Hd9 (2.54%) and Hd14 (2.98%). Titanium dioxide (TiO₂) was found in sample Hd3 (0.460%), Hd6 (0.080%) and Hd14 (4.205%).

Lead exposure can cause various biological effect depending on the duration and level of exposure. It is one of the most toxic elements that may affect the central nervous system, reproductive system and endocrine system (ATSDR, 1999).

Exposure to titanium may be harmful to brain, where titanium nanoparticles can directly access the brain through olfactory bulb present in the nose. Although titanium dioxide is used as an additive in the pharmaceutical and food products, but on the other hand, it has also been classified as a possible carcinogenic to humans by the International Agency for Research on Cancer (Flamm, 1985).

Calcium was observed in all the samples, except for Hd1, Hd4, Hd5 and Hd13. Ca content varied from 0.141 % for black hair dye (Hd15) to 85.76% for blonde hair dye (Hd2). It was observed that the calcium level in hair dye samples exceeded the permissible range (0.0005-2.40 %), except for Hd6, Hd7 and Hd15 (Bernth and Hansen, 2005). Calcium oxide was present in eleven samples, in range of 0.192% -78.75%, except for Hd1, Hd4, Hd5, Hd7, Hd13 and Hd15.

Sodium was observed only in four samples Hd1 (14.006 %), Hd3 (45.49%), Hd6 (42.70%) and Hd7 (22.60%). Na₂O was also observed in four samples Hd3, Hd6, Hd8 and Hd15 varied from 16.45%-38.97% Na level in the hair dyes exceeded the permissible range of (0.0001-0.5)% (Bernth and Hansen, 2005). The highest Al and Mg content was found in brown hair dye (Hd13:35.38%) and black dye (Hd15; 32.78 %), however the lowest content was found in brown hair dye. (Hd10; 1.31%) and in blonde hair dye (Hd2; 2.52%).

The highest concentration of Fe and Sr was observed in brown hair dye sample Hd8 (10.45) % and (0.587) % where the lowest concentration were observed in black hair dye sample Hd15 (0.281) % and blonde hair dye Hd2 (0.058) %. The highest Al₂O₃ concentration of 11.28% was found in Hd8 (blonde dyes) and the lowest value was recorded in brown hair dyes Hd10 (1.95%). The concentration of MgO ranged between 3.40% (Hd2)- 31.79% (Hd4), while Fe₂O₃ ranged between 0.075% (Hd7) - 5.127% (Hd14). Strontium oxide (SrO) varied from 0.0388% (Hd2) to 0.3084% (Hd16).

Huda (2015) evaluated the level of toxic metals in twelve samples of hair dyes from the local store for various brands in Baghdad. The concentration of heavy metals ranged from 0.41 to 0.91 mgkg⁻¹ for lead, 0.26 to 0.31 mgkg⁻¹ for copper, 0.64 to 1.36 mgkg⁻¹ for iron and 0.11 to 0.16 mgkg⁻¹ for cadmium (1mgkg⁻¹ =0.0001%). It is obvious that heavy metals causes skin problems and cancer due to long term exposure.

In regard to Ba and BaO, all Ba concentrations in samples were found to be higher than the calculated value (0.0027- 16.7786) % (Ghanjaoui et al., 2014), except in sample Hd3 (0.73%), where the highest Ba concentration was noted in sample Hd12 (68.85%). BaO was observed in the range of 0.243% - 53.93%.

Palladium was found only in one sample Hd2 (0.0132%), however, PoD was detected in two samples Hd2 (0.0086%) and Hd16 (0.0189%). The permissible limit of Pd is 0.002 mgkg⁻¹. All palladium compounds are highly toxic and carcinogenic. It may cause skin sensitization, eye or respiratory tract irritation. In general, people with known palladium allergy should not work with...
palladium compounds. Personal protective equipment should be used to prevent skin contact with palladium compounds, but no specific guideline to palladium exposure has been published (WHO, 2002). Potassium was present in ten samples. The concentration of potassium varied between 2.61% to 34.56%. Potassium oxide (K₂O) was present in nine samples, ranging between 0.31% to 15.79%. The results indicate that the toxicity resulting due to regular use of hair dyes can not be ignored.

References

Detection of natural nuclides in hair dyes