Assessment of heavy metals in suspended particulate matter in Moradabad, India

Raina Pal, Mahima, A. Gupta and Anamika Tripathi*
Pollution Ecology Research Laboratory, Department of Botany, Hindu College, Moradabad-244 001, India
*Corresponding Author E-mail: anamikambd@rediffmail.com

Abstract

Samples of suspended particulate matter (PM$_{10}$) were collected from three different sites in Moradabad, India. The sampling was done concurrently twice a week during the period of April 2011-March 2012. Elemental concentration of PM$_{10}$ was analyzed using an Inductively Coupled Plasma Optical Emission Spectrophotometer (ICP-OES). The monthly mean concentration of PM$_{10}$ (RSPM) ranged between 63-226µgm$^{-3}$, which was higher than the permissible limit of 100µgm$^{-3}$ of National Ambient Air Quality Standards. The maximum concentration of Zn, Fe, Cu, Cr and Ni found in the Industrial area of the city was 21.24, 18.43, 15.23, 0.41, 0.03µgm$^{-3}$ respectively, whereas the maximum concentration of Pb (2.72µgm$^{-3}$) and Cd (0.20µgm$^{-3}$) was found in heavy density traffic area, denoted as commercial area. The study shows that high number of vehicles and the brassware industries are responsible for enhanced concentration of heavy metals in the Brass City.

Key words

Brassware industries, Heavy metals, Suspended particulate matter, Traffic density

Publication Info

Paper received: 20 September 2012
Revised received: 25 May 2013
Accepted: 13 July 2013

Introduction

The rapid growth of urbanization and industrialization, where the progressive expansion of suburbs into closer proximity with industrial plants in certain areas, has led to the problem of air pollution (Molina and Molina, 2004). Atmospheric particulates with elevated metals may have a serious impact on human health (Liu et al., 2009; Mavroidis and Chaloulakou, 2010). At present, metropolitan cities of India along with some industrial cities are suffering due to serious metallic air pollution problems as that of developed countries (Abdelaziz et al., 2007; Kamavisdar et al., 2010). Many heavy metals are essential for life, even though they occur only in trace amount in the body tissue. They can be regarded as toxic if they injure the growth or metabolism of cells when they are present above a given concentration (Xin Hu et al., 2012). World Health Organization (WHO, 2006) has given the guidelines for air quality monitoring and Central Pollution Control Board (CPCB, 2007) has presented the deadly fact about air pollution level in few Indian cities.

The brassware industries are specialized in melting and casting metal into desired shapes and during the various processes, a large amount of metal fume is emitted which may act as a sensitizer and cause heart problems like allergy, asthma, dermatitis, bronchitis and cancer etc (Garcia et al., 2011; Dubey et al., 2012). Plants grown nearby industries are also suffering from serious pollution problem (Tripathi et al., 2009; Saralathambavani and Kamala, 2010).

It is well known that automobiles are not only responsible for previous known forms of heavy metals pollution (Cu, Zn, and Pb), but also for the many other elements (Ali Aslan et al., 2011). Vehicular traffic which is a great source of fine particulates is often enriched with potentially toxic trace elements in the urban environment (Sher and Hussain, 2006; Cicek et al., 2008). Thus, the monitoring of airborne metals in the urban environment has become an essential part of environmental planning and control programmes in several countries.

The present study was undertaken to estimate the concentration of some heavy metals (Cd, Cr, Cu, Fe, Ni, Pb and Zn) in PM$_{10}$ and efforts have been made to analyze and present the result of study to determine the level of PM$_{10}$ in residential, commercial and industrial area of Brass City, Moradabad.
Materials and Methods

The study was carried out in Moradabad, the Brass city of India. Total 312 samples of PM$_{10}$ were collected from each location, during April 2011- March 2012, broadly classified into residential, commercial and industrial areas. These locations were Police Training Centre, a residential area, Buddh Bazar, a very busy commercial site located on NH – 24 and Peetal Nagari, an industrial site having a large number of brassware industries.

PM$_{10}$ samples were collected with the help of Respirable Dust samplers (APM – 460 NL, Envirotech, New Delhi) twice a week on pre-weighed (W$_1$) glass micro fibre filters (GF/A – Whatman) of 8 x 10 inc size with air flow rate of 1-1.5 m$^3$ min$^{-1}$. After sampling, the filters were reweighed (W$_2$) in order to determine the mass of the particles collected. The sampling duration for PM$_{10}$ was 8 hr, total three samples were taken in a day (24 hr). For heavy metal analysis, 36 samples were taken from each site, three samples in a month. Total 108 PM$_{10}$ samples were selected to which known portion of the fiber filter papers covered by particulates digested by nitric acid and perchloric acid at 140 °C hot plate. Residues were then redissolved in 0.1M HCl and a blank was also prepared using the same area of unexposed glass fiber filter paper and by repeating the same procedure. These were cooled, filtered and made to 50 ml by adding distilled water. Concentrations of heavy metals were analyzed by Inductively Coupled Plasma-Optical Emission Spectrophotometer (ICP-OES, Spectro Analytical Instruments, West Midlands, UK) from samples collected for each site at Metal Handicraft Service Centre, Peetal Nagari, Moradabad (Ministry of Textiles, Govt. of India).

Summary statistics was used to obtain the means and standard deviations for RSPM (PM$_{10}$) and trace metals. One-way analysis of variance (ANOVA) was applied to detect the significant difference among metals and within metals (p ≤ 0.05). Correlation matrix was used to determine the relative association among metals (p ≤ 0.001).

Results and Discussion

The Police Training Centre is a residential area (PTC) and its monthly average concentrations of PM$_{10}$ was reported in the range of 63-177µgm$^{-3}$ (Fig. 1). The presence of PM$_{10}$ at this concentration might be due to spreading of ground sediment material into the environment. Tandon et al. (2008) also reported sweeping as a source of respirable particulate matter in the atmosphere.

In commercial area (Buddh Bazar), the average concentration of PM$_{10}$ was found in the range of 101-244µgm$^{-3}$ (Fig. 1). This high value may be due to pollution from the generator and vehicular emission. The traffic derived aerosol particles were emitted into the atmosphere due to abrasion process of automobile components such as the brake or tyre wear (Suzuki et al., 2009; He and Lu, 2010).

In industrial area (Peetal Nagari), the concentration of PM$_{10}$ was found in the range of 154-254µgm$^{-3}$ (Fig. 1). This area is surrounded by many small scale brassware industries along with heavy vehicles in narrow lanes. The road dust and metal fumes add maximum aerosol in to the atmosphere (Salve et al., 2006). The maximum concentration was found in, Industrial area (254µgm$^{-3}$) and minimum concentration was found at residential site (63µgm$^{-3}$). At all the locations the value of PM$_{10}$ was above the prescribed National Ambient Air Quality Standard (CPCB, 2009) of 100 µgm$^{-3}$ for industrial, residential, rural and other area, respectively.

Considerable differences were noted with respect to the metal content in samples from PTC, Buddh Bazar and Peetal Nagari. The concentration of heavy metals such as Cd, Cu, Fe, Ni, Cr, Pb and Zn are given in Table 1 at different sampling sites. Among the trace metals, Zn contributed the maximum concentration with annual average of 11.86µgm$^{-3}$ followed by Fe (8.63µgm$^{-3}$), Cu (7.64µgm$^{-3}$), Pb (1.94µgm$^{-3}$), Cr (0.22µgm$^{-3}$), Cd (0.10µgm$^{-3}$) and Ni (0.01µgm$^{-3}$), respectively. The trace metals in PM$_{10}$ showed the following trend : Zn > Fe > Cu > Pb > Cr > Cd > Ni (Table 1). Among the three monitoring sites, the highest concentration of Zn, Fe, Cu, Cr and Ni was found at Peetal nagar, which may be attributed to melting of Brass silies and different activities carried out in industrial area. As mentioned earlier, the melting of Brass silies emit a large amount of metal fumes known as Zinc fumes which are injurious to human as well as plants (Tripathi et al., 2010; Anabela et al., 2012) and it is reported that hotter metals emit more metal fumes (Shah and Phadke, 1995). In these industries, Brass (60% Cu and 40% Zn) and German silver (55% Cu, 35% Zn and 10% Ni) are the main alloys used for moulding purpose in making brassware items and other utensils in Moradabad. Brassware industries which are specialized in cutting, grinding, scraping, polishing etc., are the major cause of high concentration of these metals (Tripathi et al., 1990). The dust associated with toxic metals remains in air for longer duration and therefore causes severe health problems to urban population (Cirera et al., 2009; Shah et al., 2012).

Maximum concentration of Pb and Cd was observed at Buddh Bazar which falls under heavy traffic density area (Table 1). The concentration of Pb in higher amount is mainly due to vehicular emission (Tripathi, 1994; Lili Xia and Yuan Gas, 2011). Western European countries introduced unleaded fuel in the late 1980s and a number of countries now market only unleaded gasoline though there are many other countries including India, that have switched to unleaded gasoline without eliminating the sale of leaded gasoline. Therefore, lead pollution due to lead gasoline still occurs in cities (Prajapati et al., 2009; Andra et al., 2011). The major source of lead accumulation in human in developing countries was found to be airborne and 90 % of which comes from leaded gasoline (MECA, 2003). Cadmium, one of the
most dangerous pollutants for organism, is mainly derived from combustion of accumulators and carburetors of vehicles (Divrikli et al., 2006). It is a major industrial pollutant particularly in areas associated with smelting of zinc and heavy road traffic (Hassan et al., 2009). Tyre dust originat from tyres of vehicles contains many toxic metals (Adachi and Tainosho, 2004). Traffic pollutants contain potentially toxic metals like lead, cadmium, copper and zinc which are injurious to health (Kramer et al., 2010).

In order to establish inter–element relationships in atmospheric samples, correlation coefficient for eight metals were calculated and a strong correlation was found between Cu-Zn (r=0.708), Fe-Zn (r=0.692), Cu-Fe (r=0.679), Fe-Ni (r=0.612) (Fig. 2). These values were significant at p < 0.001 level. Based on the correlation study it may be concluded that the four metals viz. Zn, Ni, Fe and Cu might originate from similar sources, probably by the industrial emission especially the metallurgical / electroplating units located in the industrial area of the city (Zereini et al., 2005; Shah and Shaheen, 2008) or other anthropogenic activities. Significant (p<0.05) difference is observed between metals (F=3.118). Degrees of freedom between metals and within metals were noted 6 and 14.
Table 1 : Values of metal concentrations (µgm⁻¹) in suspended particulate matter (PM₄₀) collected from three locations of Moradabad

<table>
<thead>
<tr>
<th>Metals</th>
<th>PTC</th>
<th>Buddh Bazar</th>
<th>Peetal Nagari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0.00±0.002</td>
<td>0.20±0.21</td>
<td>0.41±0.34</td>
</tr>
<tr>
<td>Cr</td>
<td>0.01±0.03</td>
<td>0.24±0.27</td>
<td>15.23±9.16</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1±0.84</td>
<td>5.60±1.48</td>
<td>64.54±20.07</td>
</tr>
<tr>
<td>Fe</td>
<td>3.9±1.90</td>
<td>6.55±2.18</td>
<td>18.43±1.83</td>
</tr>
<tr>
<td>Ni</td>
<td>0.0002±0.0002</td>
<td>0.001±0.001</td>
<td>0.03±0.03</td>
</tr>
<tr>
<td>Pb</td>
<td>1.01±0.36</td>
<td>2.72±1.21</td>
<td>2.1±0.77</td>
</tr>
<tr>
<td>Zn</td>
<td>2.10±0.72</td>
<td>12.26±4.76</td>
<td>21.24±8.02</td>
</tr>
</tbody>
</table>

Values are mean of 36 samples ± SD

respectively. Based on the correlation data, it was possible to suggest that metal concentrations in the PM₄₀ of different locations vary considerably depending upon the proximity to sources of PMₑemission.

From the present study it is concluded that industrial activities like melting of brass sillies and traffic emissions add large quality of pollutants day by day, resulting in the elevation of suspended particles level. Based upon the above facts, Peetal Nagari was found to be the most polluted site and Police Training Centre was least polluted site in Moradabad.

Acknowledgments

The authors are grateful to the University Grant Commission (UGC); New Delhi and UPPCB, Lucknow for providing financial support for this study. The authors would like to thank Dr. Madhu Bhargadwaj (CEO), Dr. Anant Dubey and V.K. Rajput (UPPCB) for their valuable help in providing sampling facilities at different locations.

References


MECA: The case for banning lead in Gasoline manufactures of emission controls association Washington DC, USA, 51 (2003).


Salve, P.R., A. Maurya and S.R. Wale: Distribution of trace metal in atmosphere particulate matter in rural environment. I.J.E.P., 26(B), 673-677 (2006).


Shah, M.H., N. Shaheen: Annual and seasonal variations of trace metals in...
Assessment of heavy metals in SPM

Xin, Hu, Yun Zhang, Zhuheng Ding, Tijian Wang, Hongzhen Lian, Yuanyuan Sun and Jichun Wu: Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM₁₀ in Nanjing, China. *Atmos. Environ.*, **37**, 143-152 (2012).