JEB logo

Journal of Environmental Biology

pISSN: 0254-8704 ; eISSN: 2394-0379 ; CODEN: JEBIDP

About Journal
    Home
    Obituary: Dr. R. C. Dalela
    Editorial Board
    Reviewer Panel
    Publication Policies
    Guidelines for Editors
    Guidelines for Reviewers
    Abstracting and Indexing
    Subscription and Payments
    Contact Journal
    About Triveni Enterprises
 
Read Journal
    Current Issue
    Journal Archives
 
For Authors
    Guidelines for Authors
    Terms and Conditions
    Fees and Payments
    Track Paper Status
 

Google Search the Journal web-site:


    Abstract - Issue Sep 2016, 37 (5)                                     Back


nstantaneous and historical temperature effects on a-pinene

Isolation of marine fungi Aspergillus sp. and its in vitro antifouling activity against marine bacteria

 

Santhanamari Thiyagarajan1*, Manoharan Bavya2 and Alruwaili Jamal1

1Department of Microbiology, Faculty of Applied Medical Sciences, Northern Border University, Arar-91431, Kingdom of Saudi Arabia

2P.G. and Research Department of Microbiology, Asan Memorial College of Arts and Science, Chennai-600 100, India

*Corresponding Author E-mail: drsthiyagarajan@live.com

 

 

Publication Data

Paper received:

16 October 2014

 

Revised received:

19 October 2015

 

Re-revised received:

30 November 2015

 

Accepted:

15 January 2016

 

Abstract

Biofouling is considered as a main issue of concern in aquatic environment causing severe economic loss and pollution. The aim of the present study was to isolate marine fungus antagonistic to biofouling bacteria and to define antifouling compounds present in it. Using standard plate method five predominant biofouling bacteria viz., Methylococcus sp., Flavobacterium sp., Marinococcus sp., Serratia sp. and Pseudomonas sp. were isolated from marine solid substances on Zobell's agar. Tolerance range of these bacteria to NaCl was 2-10%. Isolation of fungi from mangrove and estuarine sediments and their screening identified Aspergillus sp. EF4 as a potential isolate. This isolate caused inhibition of all the five test bacterial cultures measuring zone diameters respectively of 11, 16, 12, 13 and 11mm.? Subsequent to submerged fermentation using shaking flask method this fungus produced bioactive compounds within 5 days. The culture parameters optimized were raffinose as carbon source, yeast extract as lone nitrogen source, pH up to 9.0 and temperature up to 40?C. Antifouling compounds of culture filtrate were separated and detected by a three-step procedure involving thin layer chromatography, bioautography and preparative TLC. The in vitro assay involving glass slide-wooden stick-biofilm method revealed that these compounds could cause inhibition and destruction of bacteria to an extent of 2.16 x 104 CFU ml-1 and 2.46 x 104 CFU ml-1 respectively while growth of bacteria in control beaker was enumerated to be 4.41 x 104 CFU ml-1. High performance liquid chromatography of culture filtrate indicated probable principal antifouling compound as Fumonisin B2. Isolation of antagonistic marine fungus from Indian coast and detection of its antifouling compound would help in planning effective strategies for controlling biofouling in marine environment.   

 

 

 Key words

Antagonistic fungi, Antifouling compound, Aspergillus sp., Bioautography, Biofouling, Marine bacteria 

 

 

Copyright ? 2016 Triveni Enterprises. All rights reserved. No part of the Journal can be reproduced in any form without prior permission. Responsibility regarding the authenticity of the data, and the acceptability of the conclusions enforced or derived, rest completely with the author(s).