JEB logo

Journal of Environmental Biology

pISSN: 0254-8704 ; eISSN: 2394-0379 ; CODEN: JEBIDP

About Journal
    Home
    Obituary: Dr. R. C. Dalela
    Editorial Board
    Reviewer Panel
    Publication Policies
    Guidelines for Editors
    Guidelines for Reviewers
    Abstracting and Indexing
    Subscription and Payments
    Contact Journal
    About Triveni Enterprises
 
Read Journal
    Current Issue
    Journal Archives
 
For Authors
    Guidelines for Authors
    Terms and Conditions
    Fees and Payments
    Track Paper Status
 

Google Search the Journal web-site:


    Abstract - Issue Jul 2016, 37 (4)                                     Back


nstantaneous and historical temperature effects on a-pinene

Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree

 

Xiaogang Liu1, Fusheng Li2*, Qiliang Yang1 and Xinle Wang3

 

1Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming-650 500, China

2College of Agriculture, Guangxi University, Nanning, Guangxi - 530005, China

3Faculty of Foreign Language and Culture, Kunming University of Science and Technology, Kunming-650 500, China

*Corresponding Author E-mail: lpfu6@163.com

 

 

 

Publication Data

Paper received:

29 December 2015

 

Revised received:

23 March 2016

 

Accepted:

08 April 2016

 

Abstract

To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.   

 

 

 Key words

Alternate drip irrigation, Coffea arabica, Superabsorbent polymers, Polyacrylatic acid, Water use efficiency

 

 

 

Copyright ? 2016 Triveni Enterprises. All rights reserved. No part of the Journal can be reproduced in any form without prior permission. Responsibility regarding the authenticity of the data, and the acceptability of the conclusions enforced or derived, rest completely with the author(s).