JEB logo

Journal of Environmental Biology

pISSN: 0254-8704 ; eISSN: 2394-0379 ; CODEN: JEBIDP

About Journal
    Home
    Obituary: Dr. R. C. Dalela
    Editorial Board
    Reviewer Panel
    Publication Policies
    Guidelines for Editors
    Guidelines for Reviewers
    Abstracting and Indexing
    Subscription and Payments
    Contact Journal
    About Triveni Enterprises
 
Read Journal
    Current Issue
    Journal Archives
 
For Authors
    Guidelines for Authors
    Terms and Conditions
    Fees and Payments
    Track Paper Status
 

Google Search the Journal web-site:


    Abstract - Issue Jul 2016, 37 (4)                                     Back


nstantaneous and historical temperature effects on a-pinene

Biochemical and molecular dissection of thermo-sensitive genetic male sterility in diploid cotton (Gossypium arboreum L.)

 

 

L. Sekhar1*, B.M. Khadi1, Rajesh S. Patil1, I.S. Katageri1 and Ganapati Mukri1,2

1Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad-580 005, India

2Indian Institute of Maize Research, Pusa Campus, New Delhi-110 012, India

*Corresponding Author E-mail: sekhargpb@gmail.com

 

 

 

 

Publication Data

Paper received:

13 September 2014

 

Revised received:

29 January 2015

 

Accepted:

21 Janury 2016

 

Abstract

Diploid cotton, due to its inherent problem of stamen brittleness, its found unsuitable for traditional method of hybrid seed production which involves hand emasculation followed by pollination. Due to shortfall in other methods viz., Genetic Male Sterility (GMS), as well as, Cytoplasmic Genetic Male Sterility (CGMS), hybrid seed production in diploid cotton becomes costly and thereby, covers less area among the total cotton grown area. Thermo-sensitive genetic male sterility, which overcomes the drawbacks of both GMS and CGMS can be an effective tool in coming years for hybrid cotton research. Understanding fertility and sterility variations, their relation with biochemical changes in plant is important before its application in plant breeding. Hence, the available TGMS line, Ga TGMS-3 obtained at Cotton Research Centre, UAS, Dharwad was studied for callase activity and markers associated with TGMS. The line Ga TGMS-3 had fertile anthers and showed less callase enzyme activity at pre-meiosis stage, high enzyme activity at tetrad releasing microspore stage and no callase activity during other stages. The counterpart TGMS sterile anthers displayed little higher callase activity at pre-meiosis stage, high activity at tetrad stage, but poor activity at tetrad releasing microspore stage. During tetrad stage, TGMS sterile anthers showed high callase enzyme activity giving every chance for early release of poorly developed microspores as compared to fertile anthers. At tetrad releasing microspores stage during which fertile anthers had strong callase enzyme activity led to microspores being released normally and developed normal pollen grains as compared to sterile anthers. The present investigation revealed that NAU2176, NAU2096 and BNL1227 primers can be used as tightly linked markers for TGMS trait, as evident from their differential expression in fertile and sterile anthers.         

 

 

 Key words

EST-SSR markers, Diploid cotton, Genetic male sterility, q-PCR, Thermo-sensitive

 

 

Copyright ? 2016 Triveni Enterprises. All rights reserved. No part of the Journal can be reproduced in any form without prior permission. Responsibility regarding the authenticity of the data, and the acceptability of the conclusions enforced or derived, rest completely with the author(s).