JEB logo

Journal of Environmental Biology

pISSN: 0254-8704 ; eISSN: 2394-0379 ; CODEN: JEBIDP

About Journal
    Editorial Board
    Reviewer Panel
    RnD Division
    Subscription Info
    Contact Journal
Read Journal
    Current Issue
    Journal Archives
For Authors
    Authoring Guidelines
    Publication Process
    Track Paper Status
    JEB Award

Search the Journal web-site through Google:

        Abstract - Issue Jan 2015, 36 (1)                                                                                                             Back

nstantaneous and historical temperature effects on a-pinene

Molecular analysis of dinucleotide microsatellite in growth hormone gene of Asian seabass (Lates calcarifer) from Mumbai, India 




Raj Naresh Gopal1*, S.D. Singh2, Vibha Kumari3 and A.K. Pandey3

1Division of Nutrition & Biochemistry, Central Institute of Fisheries Education, Mumbai - 400 061, India

2Fisheries Division, Krishi Anusandhan Bhawan II, ICAR, New Delhi - 110 012, India

3National Bureau of Fish Genetic Resources, Lucknow - 226 002, India

*Corresponding Author E-mail:




Publication Data

Paper received:

23 January 2013


Revised received:

28 January 2014



03 March 2014



In the present study, out of four alleles amplified from seabass (Lates calcarifer) genome inhabiting Mumbai water by PCR using growth hormone (GH) gene-specific primers, two DNA fragments (SGMS1, 233 bp and SGMS2, 239 bp) were eluted from gel, cloned using pTZ57R (2.886 kb) vector into E. coli DH5α, characterized by restriction endonuclease analysis and sequenced by automated DNA sequencer. After blasting and multiple alignment of the above sequences, SGMS1 showed 97% and SGMS2 93.3% homology with promoter region of GH gene containing microsatellite of Australian seabass and 94.6% homology between both the fragments. These sequences SGMS1 and SGMS2 were submitted to NCBI GenBank. On blasting, these sequences with gene databases, SGMS1 and SGMS2 showed partial homologies with Seriola quinqueradiata (26.9%, 12.9%), flounder (15.8%, 15.8%), Oreochromis nilotica (23%, 7.9%), Oreochromis mossambicus (23%, 7.9%) and Danio rerio (8.2%, 7.5%). Critical analysis showed the presence of microsatellite (CA)16 and (CA)19 repeats in fragments SGMS1 and SGMS2, respectively in seabass from Mumbai water in comparison to (CA)14 repeats from the Australian seabass. Further, on sequence comparison, single nucleotide mismatches detected at their several positions in relation to seabass GH gene of Australia. These nucleotide variations detected in SGMS1 and SGMS2 in comparison to those of the Australian seabass may be due to mutations owing to environmental or habitat changes that seem to have definite potentials for development of genetic markers, which would be useful for identification and selection of superior germplasm with desirable commercial traits such as high growth rate.   


 Key words

Growth hormone gene, Nucleotide polymorphism, Lates calcarifer 



Copyright 2015 Triveni Enterprises. All rights reserved. No part of the Journal can be reproduced in any form without prior permission. Responsibility regarding the authenticity of the data, and the acceptability of the conclusions enforced or derived, rest completely with the author(s).