JEB logo

Journal of Environmental Biology

pISSN: 0254-8704 ; eISSN: 2394-0379 ; CODEN: JEBIDP

About Journal
    Editorial Board
    Reviewer Panel
    RnD Division
    Subscription Info
    Contact Journal
 
Read Journal
    Current Issue
    Journal Archives
 
For Authors
    Authoring Guidelines
    Publication Process
    Track Paper Status
 

Search the Journal web-site through Google:


        Abstract - Issue Jul 2010, 31 (4)                                                                                                             Back



Abstract _7

Accumulation and translocation of heavy metals in soil and

plants from fly ash contaminated area

 

Ramesh Singh1, D.P. Singh2, Narendra Kumar2, S.K. Bhargava1 and S.C. Barman*1

1Environmental Monitoring Section, Indian Institute of Toxicology Research (IITR), Lucknow - 226 001, India

2Deptartment of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow - 226 025, India

(Received: March 14, 2009; Revised received: August 10, 2009; Accepted: August 31, 2009)

 

Abstract: The present investigation deals with the accumulation of heavy metals in fields contaminated with fly ash from a thermal power plant and subsequent uptake in different parts of naturally grown plants. Results revealed that in the contaminated site, the mean level of all the metals (Cd, Zn, Cr, Pb, Cu, Ni, Mn and Fe) in soil and different parts (root and shoots) of plant species were found to be significantly (p<0.01) higher than the uncontaminated site. The enrichment factor (EF) of these metals in contaminated soil was found to be in the sequence of Cd (2.33) > Fe (1.88) > Ni (1.58) > Pb (1.42) > Zn (1.31) > Mn (1.27) > Cr (1.11) > Cu (1.10). Whereas, enrichment factor of metals in root and shoot parts, were found to be in the order of Cd (7.56) > Fe (4.75) > Zn (2.79) > Ni (2.22) > Cu (1.69) > Mn (1.53) > Pb (1.31) > Cr (1.02) and Cd (6.06) ~ Fe (6.06) > Zn (2.65) > Ni (2.57) > Mn (2.19) > Cu (1.58) > Pb (1.37) > Cr (1.01) respectively. In contaminated site, translocation factor (TF) of metals from root to shoot was found to be in the order of Mn (1.38) > Fe (1.27) > Pb (1.03) > Ni (0.94) > Zn (0.85) > Cd (0.82) > Cr (0.73) and that of the metals Cd with Cr, Cu, Mn, Fe; Cr with Pb, Mn, Fe and Pb with Fe were found to be significantly correlated. The present findings provide us a clue for the selection of plant species, which show natural resistance against toxic metals and are efficient metal accumulators.

Key words: Accumulation, Fly ash, Heavy metals, Accumulator species, Enrichment factor, Translocation factor

?????? ?PDF of full length paper is available online

 

Copyright ? 2010 Triveni Enterprises. All rights reserved. No part of the Journal can be reproduced in any form without prior permission. Responsibility regarding the authenticity of the data, and the acceptability of the conclusions enforced or derived, rest completely with the author(s).