JEB logo

Journal of Environmental Biology

pISSN: 0254-8704 ; eISSN: 2394-0379 ; CODEN: JEBIDP

About Journal
    Editorial Board
    Reviewer Panel
    RnD Division
    Subscription Info
    Contact Journal
Read Journal
    Current Issue
    Journal Archives
For Authors
    Authoring Guidelines
    Publication Process
    Track Paper Status

Search the Journal web-site through Google:

        Abstract - Issue May 2010, 31 (3)                                                                                                             Back


Studies on the utility of plant cellulose waste for the

bioadsorption of crystal violet dye


S. Mahesh*, G. Vijay Kumar and Pushpa Agrawal


Department of Biotechnology, R.V. College of Engineering, R.V. Vidyaniketan Post, Mysore Road, Bangalore - 560 059, India

(Received: September 11, 2008; Revised received: April 12, 2009; Accepted: April 24, 2009)


Abstract: Several synthetic dyes employed in textile and food industries are discharged into aquatic environment. These visible pollutants in water damage environment, as they are carcinogenic and toxic to humans. The use of cost effective and ecofriendly plant cellulose based adsorbents have been studied in batch experiments as an alternative and effective substitution of activated carbon for the removal of toxic dyes from waste water. Adsorbents prepared from sugarcane baggase, were successfully used to remove certain textile dye such as crystal violet from an aqueous solution. The present investigation potentiate the use of sugarcane baggase, pretreated with formaldehyde (referred as Raw Baggase) and sulphuric acid (referred as Chemically Activated Baggase), for the removal of crystal violet dye from simulated waste water. Experiments were carried out at neutral pH with various parameters like dye concentration, temperature, contact time and adsorbent dosage. Efficiency of raw baggase was found better than chemically activated baggase for adsorption of crystal violet dye. The data obtained perfectly fits in the Freundlich adsorption isotherm.

Key words: Chemically activated baggase, Cellulose, Peel, Adsorption isotherm

PDF of full length paper is available online


Copyright 2010 Triveni Enterprises. All rights reserved. No part of the Journal can be reproduced in any form without prior permission. Responsibility regarding the authenticity of the data, and the acceptability of the conclusions enforced or derived, rest completely with the author(s).